Кристаллохимия халькогенидных кластерных соединений рения, молибдена, вольфрама, ниобия и тантала, координационных полимеров и супрамолекулярных соединений на их основе

А.В. Вировец

Институт неорганической химии СО РАН, г. Новосибирск Материалы диссертации на соискание ученой степени доктора химических наук по специальности 02.00.04 «физическая химия»

Современная кристаллохимия

- Дифракционное исследование, определение состава и строения соединений
 - рентгеноструктурный анализ монокристаллов
 - дифрактометрия поликристаллов
- Анализ кристаллической структуры
 - расчет стереохимических характеристик
 - анализ невалентных контактов
 - анализ мотива кристаллической упаковки
- Накопление структурной информации в базах данных
 - CSD (~593 тыс. структур, добавляется > 40 тысяч в год)
 - ICSD (~146 тыс. структур)
- Систематический кристаллохимический анализ в базах данных с помощью специализированных программ
 - VISTA (CSD, Кембридж, Великобритания)
 - TOPOS (В.А. Блатов, СамГУ, Россия)

Дизайн кристаллических структур органических и

координационных соединений

Инженерия кристаллов

(супрамолекулярная химия): Использование невалентных взаимодействий для дизайна кристаллических структур

Кристалл:

периодический супрамолекулярный ансамбль *строительных блоков*

Кристаллическая упаковка:

супрамолекулярная архитектура

Дизайн координационных полимеров

Сеточная (*reticular*), модульная (*modular*) химия

Кристалл:

Узлы (*nodes*), связанные спейсерами (*spacers, linkers*) в слои или каркасы

Кристаллическая упаковка:

топология слоя или каркаса

Кристаллохимия

систематический анализ рядов соединений

Кластерные комплексы как строительные блоки

Цель исследования

 Создание кристаллохимических основ для целенаправленного дизайна кристаллических структур с использованием кластерных халькогенидных и галогенидных комплексов рения, молибдена, вольфрама, ниобия и тантала

Задачи

- Установление строения новых халькогенидных и галогенидных кластерных комплексов Re, Mo, W, Nb и Ta
- Кристаллохимический анализ полученных результатов:
 - поиск закономерностей строения кластерных комплексов
 - выявление невалентных взаимодействий в их кристаллических структурах
 - выявление взаимосвязи между строением строительных блоков, мотивами кристаллических упаковок, топологии слоев и каркасов в координационных полимерах на их основе

Методы

- Рентгеноструктурный анализ монокристаллов
- Кристаллохимический анализ
 - стереохимических характеристик
 - специфических невалентных взаимодействий
 - для островных структур: топологических характеристик подрешеток
 - для полимерных структур: топологических характеристик базовой сетки

На защиту выносятся

- Результаты рентгеноструктурного исследования 105 новых кластерных комплексов переходных металлов.
- Способ описания кристаллических упаковок в 154 структурах кластеров {M₃X₇}⁴⁺ при помощи 10 супрамолекулярных синтонов, построенных на специфических невалентных взаимодействиях с участием атомов халькогена кластерного ядра.
- Классификация и выявление необходимых условий для возникновения комплементарных ассоциатов между кукурбит[6]урилом и кластерными катионами [M₃X₄(H₂O)_{9-n}Cl_n]⁽⁴⁻ⁿ⁾⁺ и их кубановыми аналогами.

На защиту выносятся

- Результаты сравнительного анализа упаковок комплементарных ассоциатов кукурбит[6]урилов с кластерными катионами [M₃X₄(H₂O)_{9-n}Cl_n]⁽⁴⁻ⁿ⁾⁺ и топологии подрешеток молекул кукурбит[n]урилов в 408 кристаллических структурах.
- Результаты анализа топологических характеристик слоев и каркасов в 100 кристаллических структурах слоистых и каркасных кластерных цианометаллатов в сравнении с моноядерными цианокомплексами и обнаруженные взаимосвязи между топологией каркаса и строением и связностью кластерного узла.

Часть 1. Кластерные комплексы с ядром $\{M_3X_7\}^{4+}$

Кластерное ядро $\{M_3(\mu_3-X)(\mu,\eta^2-X_2)_3\}^{4+}$ M=Mo, W, Re; X= μ_3 -O, S, Se, **Te**

158 кристаллических структур, из которых **23** определены в данной работе, в т. ч. **15** Тесодержащих

Аксиальные и экваториальные контакты

Аксиальные контакты встречаются в **154** из 158 структур В ряду X = S – Se – Те доля экваториальных контактов возрастает Inorg.Chem. (2005) **44** 8116; ЖСХ (2006) **47** 332

Длины аксиальных контактов

По Ю.В. Зефирову: : $2\sqrt{R} \downarrow 1 R \downarrow 2 \leq d \leq 2\sqrt{R} \downarrow 1 R \downarrow 2 -0.15 \leq d \leq 2\sqrt{R} \downarrow 1 R \downarrow 2 -0.25 Å$

укороченный сокращенный

сильно сокращенный

- Контакты Х_{ах}... У относятся к сокращенным и сильно сокращенным
- Их длина слабо зависит от природы атома Ү

Топологический анализ по Бейдеру экспериментальной электронной плотности в кристалле [Mo₃S₇(dtc)₃]Cl

Обнаружены связывающие взаимодействия Мо-Мо (промежуточного типа) и S_{ах}...Сl (взаимодействие закрытых оболочек) Энергия 3S_{ах}...Cl ~ 14.4 ккал/моль

Длины экваториальных контактов

Расстояния **S_{eq}...Z, Z=O, S** в **30** структурах кластерных комплексов {M₃S₇}⁴⁺

Встречаемость структур с экваториальными контактами

В ряду **S → Se → Te** доля структур, в которых наблюдаются контакты **X_{eq}…Z**, закономерно возрастает

Супрамолекулярный синтон

«Устойчивая, предсказуемо образующаяся конфигурация из функциональных фрагментов, связанных между собой направленными (специфическими) невалентными взаимодействиями»

G.R. Desiraju. Angew. Chem. Int. Ed. (1995), **34**, 2311 16

Аксиальные и экваториальные взаимодействия – основа супрамолекулярных синтонов

- Аксиальные и экваториальные контакты есть результат <u>специфического невалентного</u> <u>взаимодействия</u>:
 - Возникают предсказуемо
 - Обладают выраженной направленностью
 - Играют ключевую роль в кристаллической упаковке
- Для их реализации требуется геометрическое и функциональное соответствие фрагментов
- Аксиальные и экваториальные взаимодействия могут стать основой для супрамолекулярных синтонов

Супрамолекулярные синтоны в структурах кластерных комплексов {M₃X₇}

Синтоны с участием фрагментов одного сорта («1» в названии)

Супрамолекулярные синтоны в структурах кластерных комплексов {M₃X₇}

Синтоны с участием фрагментов двух сортов («2» в названии)

2A (87)

2C1 (46)

2B2 (21)

2B4 (3)

Распространенность синтонов

Кристаллические упаковки во всех **154** структурах описываются комбинацией найденных **10** супрамолекулярных синтонов

Синтоны, приводящие к возникновению крупных островных фрагментов

2B2 6S_{ax}...Cl

1A1 2×3S_{ax}...Se(dsit)

{[Mo₃S₇Cl₆]₂Cl}⁵⁻ A. Alberola, R. Llusar et al, J. Mater. Chem. (2007) **17** 3440 [Mo₃S₇(dsit)₃]²⁻ R. Llusar et al, Inorg.Chem. (2008) **47** 9400

Синтоны, приводящие к образованию цепей

1B

5 структур, все цепочечные участвуют терминальные лиганды

1C

5 структур, 4 цепочечные участвуют лиганды μ₃-Х

Комбинация синтонов 2А + 2С1

2A + 2C1

30 цепочечных структур

в аксиальных и экваториальных взаимодействиях участвует атом Ү

2A + 2C1

2 слоистых структуры

в экваториальных взаимодействиях дополнительно участвуют атомы терминальных лигандов

Супрамолекулярные синтоны, приводящие к образованию слоев

4 структуры

участвуют анионы Hal⁻

2А+2С2 [Mo₃S₇(dtc)₃](ClO₄)·CH₂Cl₂ участвуют терминальные лиганды

Образование каркасов через реализацию супрамолекулярных синтонов 2B4+2C1

базовая сетка (топологический тип кварца, **qtz**)

2B4 + 2C1 [Mo₃S₇(dtc)₃]₄(SO₄)₂·THF участвуют атомы терминальных лигандов

Часть 2. Супрамолекулярные соединения халькогенидных кластерных комплексов на основе кукурбитурилов

Гомологический ряд кукурбит[n]урилов (C₆H₆N₄O₂)_n (n=5,6,7,8) Всего известно **408** кристаллических структур их производных

[M₃X₄(H₂O)_{9-n}Cl_n]⁽⁴⁻ⁿ⁾⁺ M=Mo, W, n=0÷5 X=O, S, Se $[M_{3}X_{4}(H_{2}O)_{9-n}CI_{n}M'L]^{q}$ M=Mo, W, M'=Pd, Pt, Fe... L=PR₃, H₂O, Hal... n=0÷5

Каждый атом металла имеет 3 координационных места: одно *с* (транс- к μ_3 -Х) и два *d*. 27

Комплементарные ассоциаты

Впервые открыты в данной работе **17** из 39 структур представлены в диссертационной работе

кластер:Q6=1:1

кластер:Q6=2:1

 $[W_{3}S_{4}(H_{2}O)_{7}Cl_{2}](\boldsymbol{Q6})Cl_{2}\cdot 10H_{2}O \quad [(HO)_{3}PPdMo_{3}S_{4}Cl_{3}(H_{2}O)_{6}]_{2}(\boldsymbol{Q6})\cdot 20H_{2}O \quad (W)O...O(\boldsymbol{Q6})=2.64 \div 2.91 \text{ Å} \quad (Mo)O...O(\boldsymbol{Q6})=2.64 \div 2.91 \text{ Å}$

ЖСХ (2002) **43** 517 (обзор)

Условия образования комплементарного ассоциата

- Ассоциат образуется с *Q6* (при участии Na⁺ с *Q5*)
- Наличие 6 молекул координированной воды в позициях *d* кластерного ядра

[Mo₃**O**₄Cl₃(H₂O)₆]₂Cl₂(*Q6*)·14H₂O Мо-Мо **укорочено** с ~ 2.75 до 2.50 Å

Изв. РАН сер.хим. (2001) 475

(H₃O)₂[Mo₃Se₄Cl₅(H₂O)₄]₂(Q6)·15H₂O **4** Cl⁻, один в позиции *d*

Inorg. Chim.Acta. (2002) 331 31

Цепочки комплементарных ассоциатов

Соединения изотипны. Образование КА позволило структурно охарактеризовать бискубановый кластерный катион [Hg{Mo₃Se₄(H₂O)₇Cl₂}₂]²⁺

Angew.Chem. (2000) **112**, 1659; Inorg.Chem. (2000) **39** 2227; Inorg.Chem. (2001) **40** 6598

Кристаллическая упаковка в соединениях, содержащих комплементарные ассоциаты

- Упаковка в кристаллах соединений кукурбит[n]урилов диктуется водородными связями
- Поскольку соединения, содержащие комплементарные ассоциаты, сильно различаются по составу, можно ожидать разнообразия мотивов упаковок
- Анализ упаковок традиционными методами затруднен ввиду разупорядочения и объективными трудностями локализации сольватных молекул

Алгоритм расчета топологии подрешетки комплементарных ассоциатов

32

Алгоритм расчета топологии подрешетки комплементарных ассоциатов

Топологический тип полученной сетки определяется сравнением с *базами данных топологий* (>70 000 типов): RCSR (M.O'Keeffe), EPINET (S.T.Hyde), MOF, intermetallics и др.

Топология подрешеток комплементарных ассоциатов

ГЦК+ОЦК описывают 23 из 39 структур

Топологии подрешеток *Qn*

Традиционный взгляд: расположение *Qn* определяется Н-связями и координацией катионов по порталам

Центры тяжести молекул *Q5* и *Q6* в *большинстве* структур располагаются по законам ГЦК, ОЦК, ГПУ и β-Hg

Часть 3. Цианокластерные комплексы и координационные полимеры на их основе

Расшифрованы 63 кристаллических структуры из 280 известных

Цианокомплексы переходных металлов

- Магнитные материалы
 - {V^{II}}_{0.42}{V^{III}}_{0.58}[Cr^{III}(CN)₆]_{0.86}·2.8H₂O первый комплексный ферромагнетик,
 - фотопереключаемые магниты,
 - электропереключаемые магниты
- Каталитические свойства
- Антидоты в медицине
- Удобные строительные блоки для координационных полимеров:
 - устойчивы в растворе
 - разработаны методы синтеза
 - CN-лиганд имеет амбидентный характер

Координация катионов 3*d*-металлов по CN-

 $(Pr_4N)_2[M(H_2O)_5Re_6X_8(CN)_6] \cdot H_2O$ M=Mn, X=Se, M=Co, X=S

 $[Cu(NH_3)_3][Cu(NH_3)_4][Cu(NH_3)_5][W_4Te_4(CN)_{12}]\cdot 5H_2O$ Inorg.Chim.Acta (2002) **331** 48

3D

 $(Pr_4N)_2[M(H_2O)_4Re_6S_8(CN)_6]$ M=Mn, Co, Ni

J. Solid State Chem. (2000) **153** 195 Cs₂Co[Re₆S₈(CN)₆]·2H₂O Укр.хим.журн. (1999) **65** 21 Angew. Chem. (1998) **37** 1943

Топологический анализ слоев и каркасов

Сравнение структур моноядерных и кластерных цианометаллатов с общих позиций и поиск закономерностей формирования слоев и каркасов

Сеточная химия (Reticular Chemistry)

Координационные возможности узла определяют возможные *координационные фигуры* в полимерной сетке или каркасе. Сочетание координационных фигур и спейсеров задает преимущественную топологию базовой сетки

N.W. Ockwig et al. Acc. Chem. Res. (2005) 38 17640

Координационные фигуры и базовые сетки

Проанализировано 100 слоистых и каркасных соединений

Октаэдрические цианокластерные комплексы

Каркас уникальной топологии **soc**

октаэдр + квадрат

 $Cs_2Mn_3[Re_6Se_8(CN)_6]_2 \cdot 14.5H_2O$

 $\begin{array}{l} (H_{3}O)_{2}Co_{3}[Re_{6}Se_{8}(CN)_{6}]_{2}\cdot15H_{2}O \\ (H_{3}O)_{2}[\{Mn(H_{2}O)_{1.5}\}_{3}\{Re_{6}Se_{8}(CN)_{6}\}_{2}]\cdot19H_{2}O \\ (Me_{4}N)_{2}[\{Co(H_{2}O)_{1.5}\}_{3}\{Re_{6}Se_{8}(CN)_{6}\}_{2}]\cdot3H_{2}O \\ (Et_{4}N)_{2}[\{Mn(H_{2}O)_{2}\}_{3}\{Re_{6}Se_{8}(CN)_{6}\}_{2}]\cdot6.5H_{2}O \\ (Et_{4}N)_{2}[\{Ni(H_{2}O)_{1.5}\}_{3}\{Re_{6}S_{8}(CN)_{6}\}_{2}]\cdot6.5H_{2}O \\ (Me_{4}N)_{8}[\{Mn(H_{2}O)_{1.5}\}_{3}\{Mo_{6}Se_{8}(CN)_{6}\}_{2}]\cdot8H_{2}O \end{array}$

SOC

 $R \ 3c$ $R \ 3c$ $Im \ 3m \to R \ 3c$ при хранении $Im \ 3m$ $Im \ 3m$

Angew. Chem. (1998) **37** 1943; J. Solid State Chem. (2004) **177** 1896 **44**

Кластерные и моноядерные каркасные цианометаллаты: топологическая аналогия

[{Ho(H ₂ O) ₃ } Re₆Se₈(CN) ₆]·3.5H ₂ O	[Fe(H₂O) Fe (CN)₅(NO)]·2H₂O	noy
[La(H ₂ O) ₃ Re₆Te₈ (CN) ₆]·4H ₂ O	Ln[M (CN) ₆]·nH ₂ O <i>d-f</i> -цианометаллаты	nia NiAs
(H ₃ O) ₂ Zn ₃ [Re₆Se₈ (CN) ₆] ₂ ·20H ₂ O	Zn ₃ [M (CN) ₆] ₂ , M = Co, Fe	сог корунд
{Co(H ₂ O) ₄ } ₃ [W₄Te₄ (CN) ₁₂]·15.38H ₂ O {Mn(H ₂ O) ₄ } ₃ [W₄S₄ (CN) ₁₂]·nH ₂ O	АМ'[М (CN) ₆]∙nH₂О берлинская лазурь	pcu α-Ρο

Eur.J.Inorg. Chem. (2005) 142, (2000) 2341; WCX (2005) 46 S134

Выводы

- 1. Методом рентгеноструктурного анализа определены кристаллические структуры **105** новых кластерных комплексов молибдена, вольфрама, рения, ниобия и тантала. Впервые структурно охарактеризованы гетерометаллические октаэдрические цианокластерные комплексы рения/ молибдена и ниобия/молибдена состава $[Re_{6-x}Mo_xS_8(CN)_6]^{5-}$, 1<x<2, и $[Mo_5NbI_8(CN)_6]^{3-}$, а также теллурсодержащие тетраэдрические кластерные комплексы с ядром $\{M_4Te_4\}$, M = Mo, W, и выявлены основные закономерности их строения
- 2. На основании систематического кристаллохимического анализа собственных и литературных данных по 158 кристаллическим структурам кластерных комплексов на основе ядра {M₃X₇}⁴⁺ (M = Mo, W, X = S, Se, Te) выявлены два присущих им типа специфических невалентных взаимодействий, аксиальное и экваториальное, с участием атомов халькогенов кластерного ядра, и доказана их ключевая роль в формировании кристаллической упаковки на супрамолекулярном уровне 47

Выводы

- 3. На основании анализа кристаллических упаковок в 158 кристаллических структурах кластерных комплексов на основе ядра {M₃X₇}⁴⁺ выделено 10 новых супрамолекулярных синтонов, построенных на аксиальном и экваториальном взаимодействии, прослежена взаимосвязь между реализацией того или иного синтона и формированием в кристалле цепочечных, слоистых и каркасных супрамолекулярных архитектур и предложены практические рекомендации по использованию синтонов для дизайна кристаллических структур
- 4. На основании кристаллохимического анализа собственных и литературных данных по **39** кристаллическим структурам кластерных комплексов [M₃X₄(H₂O)_{9-n}Cl_n]⁽⁴⁻ⁿ⁾⁺ (M = Mo, W, X = S, Se, n = 1-5) и кубановых комплексов на их основе показано, что они образуют устойчивые комплементарные ассоциаты с кукурбит[6]урилом только в тех случаях, когда все шесть *d*-позиций кластерного ядра заняты координированными молекулами воды

Выводы

- 5. На основании анализа топологии подрешеток комплементарных ассоциатов и молекул кукурбит[n]урилов в 446 кристаллических структурах показаны предпочтительная реализация небольшого числа топологических типов, и, в частности, что топологические мотивы ГЦК, ГПУ, ОЦК и объемно-центрированный тетрагональный заметно превалируют над другими, описывая в совокупности более половины выборки.
- 6. На основании систематического анализа топологических характеристик слоев и каркасов в **100** кристаллических структурах кластерных цианометаллатов с учетом как собственных результатов, так и литературных данных, выявлены закономерности реализации того или иного топологического типа в зависимости от способа координации цианокластерного аниона и катионов *d* и *f*-металлов.

Публикации и апробация

- Опубликована 72 работы в период с 1994 по 2013 годы, из них 38 - в международных журналах
- Различные части работы докладывались на:
 - I, II, III и V Национальных кристаллохимических конференциях (1998, 2000, 2003, 2009 гг., устные доклады)
 - XIV семинаре по межмолекулярному взаимодействию и конформациям молекул, г. Плёс, 2001 г. (устный доклад)
 - XVIII Конгрессе международного союза кристаллографов, г.
 Глазго, 1999 г. (стенд)
 - 20-й Европейской кристаллографической конференции, г.
 Краков, 2000 г. (стенд)
 - Конференциях им. А.В. Николаева (ИНХ СО РАН, устные доклады)